Em nosso laboratório desenvolvemos a longo tempo sensores e biossensores eletroquímicos com finalidades de aplicações em detecção e determinação de diversas espécies de interesse clínico, ambiental ou alimentício. O desenvolvimento destes dispositivos sempre se pautou na utilização de novos materiais na busca de melhoria da seletividade e sensibilidade, com emprego de biomoléculas como enzimas e anticorpos. O problema de estabilidade usualmente encontrado em tais sistemas nos motivou a buscar alternativas como o emprego de catalisadores biomiméticos formados a partir de estruturas organizadas/ordenadas sobre a superfície de eletrodos. Embora significativos, os progressos alcançados ainda não eram suficientes para a viabilização comercial dos dispositivos desenvolvidos, que sempre foram uma preocupação do grupo. A partir deste ponto o nosso grupo começou a investir no desenvolvimento de dispositivos eletroquímicos que atendessem requisitos como baixo custo, uso descomplicado e de fácil fabricação. Destacam-se aqui alguns trabalhos do nosso grupo como detectores eletroquímicos voltados para cromatografia de íons e dispositivos tipo point-of-care baseados na utilização de papel como plataforma de construção. As células eletroquímicas preparadas com papel permitem obter dispositivos que podem fazer desde o clean-up de amostras, separação de analitos e detecção de forma simples e precisa. Os recentes avanços destes dispositivos serão abordados durante a apresentação.
The logical synthesis of extended solids has been a long-standing objective in chemistry. The fundamental problem is that linking molecular building units into extended structures often leads to amorphous or poorly crystalline solids. This lecture starts by showing how this dream was turned into reality with the design and development of metal-organic frameworks (MOFs). The major conceptual advance is the use of metal-oxide clusters as anchors for joining organic linkers into robust crystalline open frameworks. The clusters’ rigidity imparts directionality and thus it is crucial in building structures by design. The lecture will show how this approach is being fruitfully applied to make for the first time materials with controlled porosity, pore-functionality and metrics. Reticular chemistry, linking of molecules into extended structures by strong bonds, is being generalized to link variously shaped clusters and organic units for the design of MOFs, and recently the highly sought after covalent organic frameworks (COFs); thus making this area the fastest growing in chemistry. Finally, this lecture will show how reticular chemistry has led to the design of the least dense crystals, the highest surface area materials, and the largest number of truly porous crystals. The applications of this chemistry to the storage of methane, separation of carbon dioxide and catalysis will be presented.
Oxygen and nitrogen heterocyclic compounds constitute the largest and most varied families of organic compounds, which comprises a great number of classes according to the size, number of heteroatoms and oxidation of the heterocyclic ring. There is a huge number of marketed drugs and food additives based in these two types of compounds. The important industrial and biological applications of these compounds and also some problems associated with their application, such multiple drug resistance to some nitrogen heterocycles and potential carcinogenesis of high doses of oxygen heterocyclic-based antioxidants, led us to develop new synthetic methods for novel derivatives of both families of the referred heterocyclic compounds.
We have been devoted time to the development of new syntheses for flavones [1] and 2- and 3-styrylchromones [2] and also on their transformation into nitrogen heterocyclic compounds (e.g. pyrroles, pyrazoles, 1,2,3-triazoles and dyads of pyrazole-1,2,3-triazoles) [3]. These studies were also accompanied with the evaluation of the antioxidant and anti-inflammatory activities of these chromone-type compounds [4]. Recently, we have reported on the synthesis of a bioactive natural prenylated (E)-2-styrychromone [5] and also on enantiopure 2-C-glycosyl-3-nitrochromenes [6]. New synthetic methods for several types of novel xanthones, some of them possessing potent antioxidant activity, have also been established [7].
In the last years, we have also started program on the synthesis of other types of potential biologically active nitrogen heterocyclic compounds, such as 4-quinolones, quinolines and acridones and related compounds [8].
In the present communication we present and discuss some of our recent results on the chemistry and some biological applications of the referred heterocyclic compounds.
Acknowledgments
Thanks are due to the University of Aveiro, “Fundação para a Ciência e a Tecnologia”, European Union, QREN, FEDER and COMPETE for funding the Organic Chemistry Research Unit (project PEst-C/QUI/UI0062/2013) and the Portuguese National NMR network.
References
[1]. e.g. Aust. J. Chem., 2008, 61, 718-724; Synlett, 2012, 23, 2353-2356; Synlett, 2013, 24, 2683-2686.
[2]. e.g. Eur. J. Org. Chem., 2008, 1937-1946; Monatsh. Chem., 2008, 139, 1307-1315.
[3]. e.g. Synlett, 2011, 2740-2744; Eur. J. Org. Chem., 2012, 132-143; Tetrahedron Lett., 2013, 54, 5391–5394; Tetrahedron, 2013, 69, 9701-9709.
[4]. e.g. Eur. J. Med. Chem., 2013, 67, 280-292. Eur. J. Med. Chem., 2014, 72, 137-145.
[5]. Synlett, 2014, 25, 1116-1120.
[6]. J. Org. Chem., 2013, 78, 12831−12836.
[7]. e.g. Eur. J. Org. Chem., 2009, 2642-2660; Bioorg. Med. Chem., 2010, 18, 6776-6784; Synlett, 2011, 1403-1406; Synlett, 2011, 2005-2008; Synlett, 2012, 23, 559-564; Org. Biomol. Chem., 2012, 10, 2068–2076; Tetrahedron Lett., 2013, 54, 85-90.
[8]. e.g. Synlett, 2011, 2955-2958; Synlett, 2012, 23, 889-892; Monatsh. Chem., 2014, 145, 1803–1816; Tetrahedron, 2014, 70, 5310-5320.
A Química Analítica, assim como as demais áreas da Química, apresentou uma evolução muito grande, especialmente nesta última década. Face à consolidação das técnicas analíticas para o controle de qualidade, aplicadas com sucesso a um grande número e diversidade de amostras, é possível afirmar que a Química Analítica tem desempenhado uma função importante para o desenvolvimento científico e tecnológico atual. Ao lado do vigoroso e crescente desenvolvimento da Química Analítica, nota-se um grande interesse para o estabelecimento de métodos adequados ao controle de qualidade para produtos e processos industriais, bem como para matrizes biológicas e alimentos, entre outras. Sob estes aspectos, novas tecnologias têm sido mais e mais estudadas, com o intuito de atender aos crescentes desafios da atualidade e importantes avanços tem sido alcançados nas áreas de espectroanalítica, cromatografia, instrumentação, sensores, entre outras. Atualmente, diversos métodos estão relativamente bem estabelecidos para a análise de alguns tipos de amostras como águas ou outras similares com matriz relativamente simples. Entretanto, ainda há carência de métodos que possam ser aplicados para petróleo e derivados, produtos farmacêuticos, polímeros e novos materiais (p. ex., nanotubos de carbono). Considerando o contexto atual, serão apresentados e discutidos alguns dos recentes avanços no Brasil para o desenvolvimento de métodos analíticos adequados aos requisitos modernos, bem como as principais tendências na área de preparo de amostras, como o uso de métodos que envolvam menor consumo de reagentes e a consequente diminuição de efluentes gerados. O uso de energias não convencionais, como ultrassom e micro-ondas, será abordado, assim como sua aplicação em química analítica e na aplicação e intensificação de processos industriais.
Conferência Empresa
Reaxys é uma solução da Elsevier desenhada por químicos para ajudar químicos de todas as áreas a avançar melhor em suas pesquisas. O Reaxys armazena dados e informações de mais de 78 milhões de substâncias, como propriedades químicas, físicas e espectroscópicas desses compostos, condições e possibilidades de reação, artigos, patentes e capítulos de livros, entre diversas outras informações, todas disponíveis numa interface simples e intuitiva.
Esta base de dados está disponível através do portal CAPES, e qualquer universidade e instituto que tenha convênio com a CAPES, possui acesso livre ao Reaxys.
Convidamos a todos para uma palestra-demonstração do Reaxys, onde a base de dados será detalhadamente explorada, com exemplos práticos do dia-a-dia de um pesquisador da área química.
The search for low-operating voltage, fast-switching, and stable organic field-effect transistors (OFETs) has been of utmost need in the area of organic electronics. Getting away from oxide dielectrics in OFETs is not only cost-effective but has tremendous advantages for improving carrier mobility and stability of devices. The charge carrier mobility in OFETs may be enhanced by a few orders of magnitude by an appropriate choice of the dielectric-semiconductor interface. We have recently shown that the polarity of solvents used for dissolving the dielectric material plays a large role in enhancing charge carrier mobility and improving the overall transport characteristics in OFETs. [1-3]
We demonstrate low-operating voltage, high mobility, and stable OFETs using both non-polar and polar polymeric dielectrics such as poly(4-vinyl phenol) (PVP), poly methyl metacrylate (PMMA), and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFe), dissolved in solvents of high dipole moment. High dipole moment solvents such as propylene carbonate (PC) and dimethyl sulfoxide (DMSO) used for dissolving the polymer dielectric, enhances charge carrier mobilities by orders of magnitude in pentacene OFETs compared to low dipole moment solvents. In order to gauge the extent of variation in the dipolar orientation for the polymer dielectric films due to the solvents used, the switching behavior was studied. The ac response clearly demonstrated better switching performance for dielectric films spincoated from polar solvents. The frequency response of the OFETs is attributed to a high degree of dipolar-order in dielectric films obtained from high-polarity solvents and the resulting energetically ordered landscape for transport.
Recently, we have demonstrated the application of self-assembled diphenylalanine peptide nanostructures (PNS) as a dielectric layer in stable pentacene-based OFETs [4]. PNS films further allow an easy fabrication of top-gate pentacene OFETs, opening up several routes towards enzyme–analyte sensing application and a platform for biosensing in the future, using a simple transistor geometry.
[1] N. B. Ukah, J. Granstrom, R. R. Sanganna Gari, G. M. King, and S. Guha, Appl. Phys. Lett. 99, 243302 (2011).
[2] N. B. Ukah, S. P. Senanayak, D. Adil, G. Knotts, J. Granstrom, K. S. Narayan, and S. Guha, J. Poly Science: Polymer Physics B 51, 1533 (2013).
[3] G. Knotts, A. Bhaumik, K. Ghosh, and S. Guha, Appl. Phys. Lett. 104, 233301 (2014).
[4] In collaboration with Prof. Wendel Alves, Universidade Federal do ABC, Santo André, SP, Brazil
No ano 2000 a CAPES tomou a iniciativa inédita de criar uma Área de Pós-Graduação (PG) em Ensino de Ciências e Matemática, sua 46ª área de conhecimento. Nessas duas vertentes, ciências e matemática, com maior acúmulo de conhecimentos no campo internacional e com maior comunidade de investigadores no Brasil, a área se propunha a fazer pesquisa aplicada para melhorar as salas de aula do país. Treze anos depois, no contexto da Grande Área Multidisciplinar, esse escopo foi ampliado para Ensino, abrangendo outras vertentes, como saúde, tecnologia e humanidades, totalizando hoje 124 Programas de Pós-Graduação.
Para que esse esforço? Para pesquisa, sim; mas a Área de Educação já seria suficiente como nicho de pesquisa. O diferencial da área 46 é a pesquisa translacional, aplicada e em busca de resultados facilitadores e multiplicáveis. É essa a principal marca da Área de Ensino: pesquisa educacional de qualidade e com destacadas experiências de aplicação nos espaços formais e não formais de educação. E a implantação dos Mestrados Profissionais, que representam hoje 53% dos PG da Área, é parte dessa estratégia, com iniciativas que já completaram 10 anos de experiência.
Nesse contexto, a importância da Pós-Graduação na área de Ensino para a Educação Básica brasileira, nosso título, se refere aos grandes desafios da educação brasileira, expressos: (i) na consciência sobre os maiores problemas atuais; e (ii) no engajamento para o sucesso das 20 metas do Plano Nacional de Educação 2014-2024 e para a construção do Sistema Nacional de Educação.
Alguns destes maiores problemas atuais da educação: (1) o acesso a um ensino médio (EM) de qualidade (com professores qualificados, atualizados, currículos formadores e integrados e não hiper conteudistas e apenas informativos): 69% da população brasileira, mais de 130 milhões de pessoas, ainda está excluída desse direito; (2) o acesso ao ensino superior, pois apenas 8% dos brasileiros alcançam atualmente esse nível. Ressalto que essas duas ações, por si, já convergem para a redução da pobreza: uma pesquisa do Centro de Estudos Estratégicos, com dados dos Ministérios do Trabalho e da Educação, evidenciam que trabalhadores que têm o EM ganham 42% a mais do que os que têm apenas ensino fundamental, e os que tem ES completo ganham 170% a mais do que os que só completaram o EM. Num país em que 66% das famílias vivem com valor menor do que o de uma bolsa de doutorado por mês, com uma desigualdade marcada por 27 vezes a diferença entre os mais altos e os mais baixos salários, esses dois pontos são parte da luta pela redução das desigualdades no Brasil. Eu destacaria ainda: (3) a retenção dos jovens no ensino médio, pois hoje no país apenas 48% dos jovens de 19 anos ainda estão na escola, estando os outros 52% na contra-mão da via de acesso à universidade. Finalmente quero destacar o papel da pós-graduação em três metas do PNE: a meta 14, para elevar as matrículas na PG até alcançar a titulação anual de 60 mil mestres e 25 mil doutores; a meta 15, que fortalece as licenciaturas ao trabalhar para que todos os professores da educação básica tenham com formação superior em licenciatura; e a Meta 16, para formar 50% dos professores da educação básica com pós-graduação lato e strictu sensu com formação continuada. Nestas metas estamos completamente comprometidos. E como a luta pela melhoria da educação é muito maior do que isso, estamos atentos e participantes.
Understand the reasons that infer on food and beverage choice, besides a challenging task, it is important step for innovation, research and development in food science and technology, and agrobusiness areas. The use of advanced methods in sensory science and consumers research, with appropriate multivariate statistical techniques, such as External Preference Map applying PLS regression analysis (multivariate statistical method) the sensory descriptor terms considered drivers of liking by consumers. The correlation between instrumental analysis of chemistry compounds and sensory science data by PLS regression analysis is a practical and useful tool in determining drivers of liking of every kind of beverages or food in R&D area.
The subjects of this talk are multifunctional nanoparticles controlled by nanomachines for targeting, imaging and drug delivery in cells and in vivo. The nanoparticles are designed to 1) trap therapeutic molecules inside of nanocarriers, 2) carry therapeutics to the site of the disease with no leakage, 3) release a high local concentration of drugs, 4) release only on command – either autonomous or external, and 5) kill the cancer or infectious organism. The most important functionality is the ability to trap molecules in the pores and release them in response to desired specific stimuli. Two types of external stimuli will be discussed: light and oscillating magnetic fields. Activation by internal biological stimuli such as pH changes, redox potential changes and enzymes will also be presented. Molecular machines based on molecules that undergo large amplitude motion when attached to mesoporous silica - impellers, snap-tops and valves – will be described. Derivatized azobenzene molecules, attached to the interior pore walls function as impellers that can move other molecules through the pores. Nanoparticles containing anticancer drugs in the mesopores are taken up by cancer cells, and optical stimulation of the impellers drives out the toxic molecules and kills the cells. Snap-tops with cleavable stoppers release cargo molecules when the stopper is removed from the pore entrance. Nanovalves consisting of rotaxanes and pseudorotaxanes placed at pore entrances can trap and release molecules from the pores in response to stimuli. Activation of these nanodevices by the five types of stimuli in solution, in living cells, and in animal models will be discussed. Applications to treatments of cancers (including pancreatic and breast) and of intracellular infectious diseases (including tuberculosis and tularemia) will be presented.
The chemical synthesis of natural products provides an exciting platform from which to conduct fundamental research in chemistry and biology. Our laboratory has ongoing research programs targeting the chemical syntheses of several natural products, including members of the epidithiodiketopiperazines, the ent-kauranoids, and the acutumine alkaloids. The densely packed arrays of heteroatoms and stereogenic centers that constitute these polycyclic targets challenge the limits of current technology and inspire the development of new synthetic strategies and tactics. This seminar will describe our latest progress in both our methodological and target-directed synthesis endeavors.
Conferência Empresa
Modern society is entirely dependent on the products of the chemical industry. Common articles from furniture to clothes and from mobile phones to pharmaceuticals all require chemicals. But traditional supply chains for chemicals are not sustainable. The feedstocks are often based on limited resources, the manufacturing employs old chemistry that is dangerous and wasteful, the chemicals are often not environmentally compatible and the final articles can end up thrown away causing environmental pollution. The bio-resources of Brazil represent a great opportunity for new supply chains starting with a renewable resource; with green chemistry methods to add value through benign extraction and downstream chemical conversions, we have the opportunity to build a new family of truly green and sustainable chemicals to feed our consumer goods companies. In my talk I will consider examples of how this can work, and in a way that is economically feasible as well as environmentally sound and socially acceptable. The examples will be based on a range of feedstocks including agricultural residues and food processing by-products and waste.
The research of our group has always been related with the study of natural products, in particular the Amaryllidaceae alkaloids, which are nearly exclusive to plants of the Amaryllidaceae family. The first alkaloid isolated from this plant family was lycorine, obtained from Lycoris radiata in 1877 and since then, more than 400 alkaloids have been isolated, many of them with interesting biological and pharmacological properties.
In an early phase, our research was focused on the genus Narcissus, which is distributed in the Mediterranean area, and is an important source of lycorine and homolycorine type alkaloids. Unexpectedly, one of the species studied, N. confusus, was found to have a remarkably high content of galanthamine, an alkaloid that inhibits the enzyme acetylcholinesterase and is used for the palliative treatment of Alzheimer’s disease (Reminyl®).
We went on to study several Amaryllidaceae species used in the traditional medicine of South Africa, which, together with Latin America, is the main centre of diversification of this plant family. It is worth noting that the predominant alkaloids in the South African species are of the crinine type with the ethane bridge in beta, which are absent in the species of the genus Narcissus.
Currently we are focused on finding new sources of galanthamine since, although its synthesis has been successfully accomplished, pharmaceutical manufacture continues to rely on the extraction of the natural product from Leucojum aestivum. We are also searching for new natural products in Central and South American countries as potential lead compounds for therapeutic purposes. In this context, in recent studies we have shown that haemanthamine type alkaloids, with the ethane bridge in alpha, present a very selective apoptotic activity against tumour cells. Additionally, we are testing the new isolated compounds for antiprotozoal activities (against malaria, leishmania, Chagas’ disease and sleeping sickness).
Finally, we are developing docking studies of these compounds for predicting inhibitory activity against several key enzymes (acetylcholinesterase, GSK-3 etc.), thus avoiding the necessity to isolate a high number of inactive compounds.
The single chirality of biological molecules has fascinated scientists and laymen alike since Pasteur’s first painstaking separation of the enantiomorphic crystals of a tartrate salt over 150 years ago. In the past decade, a number of theoretical and experimental investigations have helped to delineate models for how one enantiomer might have come to dominate over the other from what presumably was a racemic prebiotic world. Our work has highlighted mechanisms that include either chemical or physical processes, or a combination of both. While much of the scientific driving force for this work arises from an interest in understanding the origin of life, research focusing on mechanisms for the enantioenrichment of chiral molecules has the potential to impact a wide range of applications, most notably in the synthesis and formulation of pharmaceuticals.
There has been tremendous interest in recent years to study two-dimensional atomic layers which form building blocks of many bulk layered materials. This was initiated by the spectacular discovery of graphene. This talk will focus on the materials science of graphene and the emerging field of 2D atomic layers beyond graphene. Several aspects that include synthesis, characterization and device fabrication will be explored with the objective of achieving all 2D functional structures for future technologies. The concept of nanoscale engineering and the goal of creating new artificially stacked van der Waals solids will be discussed through a number of examples including graphene and other 2D layer compositions. The talk will explore the emerging landscape of 2D materials systems that include graphene, boron-nitrogen-carbon systems, and a large number of transition metal dichalcogenide compositions. Some of anticipated applications of these materials will also be discussed.
It is now 50 years since the first molecular dynamics simulation of liquids using realistic potentials were pioneered by Aneesur Rahman. In this talk we will discuss the developments of these methods that have resulted in the accurate modelling of interfaces and to the prediction of the surface tension of a simple liquid. Here the simulation can be used to test the in two-body and three-body intermolecular potentials that describe the gas-liquid interface.
The lubrication of surfaces coated with polymers is an important technological problem and one that is difficult to solve effectively using non-equilibrium molecular dynamics with atomistic models. The timescale of the simulation is such that shearing rates that can be achieved are many orders of magnitude higher than those observed in experiment. This problem can be addressed in part by switching to a mesoscale model, which still preserves the important elements such as the shape and charge of the adsorbed polymers but allows for a longer in-silico time step.
We conclude that the kinetic friction coefficient between charged brushes is higher than that of neutral brushes at low compressions and smaller at high compressions. We also show that it is possible to simulate ultra-low friction coefficients, comparable with experiments, using the smallest shear rate accessible in a mesoscale simulation. The unexpected behaviour of the shear deformation-induced structural heterogeneities in charged polymer brushes calls for further experiments to elucidate this local reorganization of the ions in adsorbed charged polymers.
A maior compreensão das bases moleculares das doenças associada à completa caracterização do genoma humano em 2001, tem permitido a identificação de um número crescente de alvos terapêuticos e novas vias de sinalização celular passíveis de serem exploradas no desenvolvimento de fármacos inovadores. Estes avanços permitiram mapear redes de interações entre diferentes alvos farmacológicos relacionados a gênese de uma determinada doença (network pharmacology) e compreender porque doenças multifatoriais, e.g. asma brônquica, artrite reumatoide, esquizofrenia, diabetes mellitus e o câncer, são muito pouco responsivas a terapia mono-alvo. Nestes casos, a baixa eficácia é facilmente explicada pelas interações polifarmacológicas entre algumas proteínas humanas, criando mecanismos de comunicação intracelulares robustos e cooperativos capazes de contornar perturbações induzidas pela ação de um simples fármaco na resposta produzida por um dos seus constituintes, que resultam em redução de sua eficácia e/ou aumento de sua toxicidade relativa. Por esta razão, a abordagem “uma doença-múltiplos alvos” que explora a ação de um ou mais fármacos em mais de uma biomacromolécula-alvo relacionada à gênese de um processo patológico de cunho multifatorial, vem ganhando crescente destaque na literatura internacional. Esta abordagem de terapia polifarmacológica consiste em combinar em um só fármaco as características estruturais necessárias para permitir seu reconhecimento molecular por mais de um diferente biorreceptor envolvido na gênese da doença alvo. Esta estratégia, explorada no passado para o desenvolvimento de ligantes de ação dupla, teve sua terminologia alterada para fármacos multialvos,de forma a contemplar substâncias bioativas que atuam em mais de dois alvos moleculares, de forma não promíscua.
Neste contexto, nosso grupo de pesquisas vem envidando esforços no desenvolvimento de fármacos multialvos racionalmente planejados com base na estrutura de ligantes seletivos ou dos receptores que se deseja modular, através da cuidadosa aplicação de algumas estratégias da Química Medicinal para a adequada combinação de grupos farmacofóricos necessários ao seu reconhecimento molecular pelos biorreceptores alvo com afinidade e eficácia adequados, como a hibridação molecular. Nesta apresentação, descreveremos a gênese estrutural e o perfil farmacológico de novos protótipos multialvos capazes atuar em doenças crônico-degenerativas de alta prevalência, como a hipertensão arterial pulmonar, a artrite reumatoide e o câncer, explorando o grupamento N-acilidrazona (NAH) como estrutura privilegiada.
Referências selecionadas: Duarte, C. D.; Barreiro, E. J.; Fraga, C. A. M. (2007) Mini Rev. Med. Chem. 7, 1108-1119; Kümmerle, A. E.; Schmitt, M.; Cardozo, S. V. S.; Lugnier, C.; Villa, P.; Lopes, A. B.; Romeiro, N. C.; Justiniano, H.; Martins, M. A.; Fraga, C. A. M.; Bourguignon, J.-J.; Barreiro, E. J. (2012) J. Med. Chem., 55, 7525-7545; Alencar, A. K. N.; Pereira, S. L.; Montagnoli, T. L.; Maia, R. C.; Kümmerle, A. E. ; Landgraf, S. S. ; Caruso-Neves, C. ; Ferraz, E. B. ; Tesch, R. ; Nascimento, J. H. M.; Santanna, C. M. R.; Fraga, C. A. M.; Barreiro, E. J.; Sudo, R. T. ; Zapata-Sudo, G. (2013) Brit. J. Pharmacol., 169, 753-762; Barreiro, E. J.; Kummerle, A.E.; Fraga, C. A. M. (2011) Chem. Rev. 111, 5215-5246; Alencar, A. K. N.; Pereira, S. L.; DaSilva, F. E.; Mendes, L. V.P.; Cunha, V. M. N.; Lima, L. M.; Montagnoli, T. L.; Caruso-Neves, C.; Ferraz, E. B.; Tesch, R.; Nascimento, J. H. M.; Sant’Anna, C. M. R.; Fraga, Carlos A. M.; Barreiro, E. J.; Sudo, R. T.; Zapata-Sudo, G. (2014) Int. J. Cardiol., 173, 154-162.
SUPORTE FINANCEIRO: FAPERJ, CNPq, INCT-INOFAR
Commonly used heterogeneous catalysts often involve supported metallic nanoparticles, oxides and sulfides being among the most popular types of supports. The final activity of a supported catalyst is the result of delicate interplay between particles size, nature of the support and metal-support interface leading to a very rich but also complex chemistry. To optimize the performance of supported catalysts it is necessary to discern the contribution of each of these effects to the final catalytic activity and selectivity. This is, however, not a simple task requiring the use of model systems either from experiment and theory. Two examples will be used to illustrate how a combined use of computational modeling and experiment on model systems under controlled conditions allows us to gain detailed understanding of the chemistry behind a reaction taking place on a supported catalyst. The firs example involves the water gas shift (WGS) reaction catalyzed by Pt/CeO2 whereas the second one correspond to recent work regarding CO2 hydrogenation to methanol catalyzed by a new class of catalysts consisting of Cu or Au nanoparticles supported on TiC. In the case of the WGS, we will show that small Pt nanoparticles are the most active and that the activity involves the reduction of Ce4+ sites of the underlying ceria support to Ce3+. This strong metal-support interaction is precisely the key for the high catalytic activity of this system.1 In the case of the Cu/TiC and Au/TiC catalysts we will show that the polarization of the electronic density induced by the underlying carbide is the reason for their high catalytic activity. The experiments show that the major product over these model catalysts is CO which is produced by the reverse water-gas shift reaction (RWGS, CO2 + H2 → CO + H2O) whereas the secondary product is methanol (CO2 + 3H2 → CH3OH + H2O). Density functional theory based calculations on suitable models show that these systems strongly activate CO2 and point to HOCO as a key intermediate for the generation of CO through the RWGS, with the production of methanol probably involving the hydrogenation of a HCOO intermediate or the CO generated by the RWGS.2
[1] A. Bruix, J. A. Rodriguez, P. J. Ramírez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek and F. Illas, J. Am. Chem. Soc. 2012 ,134, 8968
[2] J. A. Rodriguez, J. Evans, L. Feria, A. B. Vidal, P. Liu, K. Nakamura, F. Illas, J. Catal. 2013, 307, 162
Conjugated polyelectrolytes (CPE) feature π-conjugated backbones that are functionalized with polar, ionic side chains. These polymers have very strong optical absorptivity due to the conjugated electronic system, and the HOMO-LUMO gap can be controlled by tuning the electronic nature of the monomer units. CPEs are polymer amphiphiles, and consequently they self-assemble in solution into colloidal aggregates, and they can be deposited onto surfaces to afford nanostructured films by using the layer-by-layer method. Due to the π-conjugated backbone, CPEs exhibit photonic properties, exhibiting strong absorption in the visible region and strong fluorescence. Fundamental studies of the self-assembly of CPEs in solution and at interfaces, along with their application as biosensors and in hybrid solar cells will be discussed.
Leading References:
1) Jiang, H. et al. "Conjugated Polyelectrolytes: Synthesis, Photophysics and Applications", Angew. Chem. Int. Ed. Engl. 2009, 48, 2300.
2) Sambur, J.; et al. “Interfacial Morphology and Photoelectrochemistry of Conjugated Polyelectrolytes Adsorbed on Single Crystal TiO2”, Langmuir 2011, 27, 11906-11916.
3) Zhu, X. Z.; et al. “Photosensitization of Single-Crystal ZnO by a Conjugated Polyelectrolyte Designed to Avoid Aggregation”, J. Phys. Chem. Lett. 2013, 4, 3216-3220.
4) Fang, Z.; et al. “Low-Bandgap Donor-Acceptor Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 2011, 133, 3063-3069.
The marine environment is a complex system, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making advancements in knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on planetary changes. Such happens due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with international programs working toward expanding the frontiers of marine biogeochemistry, including climate change, ocean acidification and alterations in the carbon cycle. It is expected that the oceanographic data produced from now on will allow understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. The environmental changes arising from human activity since the 18th century have made the biogeochemistry of the surface of the Earth even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include plastics, substances such as hormones, antibiotics, legal and illegal drugs and ocean acidification. This knowledge brings with it greater responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge is currently to create a framework project to develop education, science and technology applied to oceanography. Advances in knowledge, and the increasing availability of analytical resources offer favorable conditions for chemistry and oceanography to grow together in order to preserve the oceans and to promote the development of society.
Reference: Vanessa Hatje; Monica Ferreira da Costa; Letícia Cotrim da Cunha. OCEANOGRAFIA E QUÍMICA: UNINDO CONHECIMENTOS EM PROL DOS OCEANOS E DA SOCIEDADE. Quim. Nova, Vol. 36, No. 10, 1497-1508, 2013.
Biomass is an important renewable source of carbon for the sustainable production of fuels, chemicals, and materials. We will present results from our recent work on liquid-phase catalytic processing of lignocellulosic biomass, with an emphasis on the synthesis of new catalytic materials and the elucidation of solvent effects for these processes. We will show aqueous-phase processing can be carried out over bimetallic catalysts (e.g, RhRe, RhMo, PtMo) to achieve selective production of -diols from biomass-derived reactants. We will show that the active sites on these bimetallic catalysts are bi-functional in nature, where the more reducible metal (Rh, Pt) catalyzes hydrogenation/dehydrogenation processes, and the more oxophilic metal (Re, Mo) provides sites that facilitate acid-catalyzed reactions. We will then present strategies for the catalytic conversion of the C5 and C6 sugars present in hemi-cellulose and cellulose, respectively, to produce gamma-valerolactone (GVL). We will present a processing approach that uses GVL as a solvent to convert simultaneously the C5 and C6 sugars in biomass, thereby simplifying separation steps, because GVL is one of the reaction products. We will demonstrate that we can produce soluble carbohydrates from corn stover, hardwood and softwood at high yields (80-90%) in a solvent consisting of biomass-derived GVL, water, and dilute acid (0.005 M). We will show that these carbohydrates can be recovered and concentrated (up to 130 g/L) in an aqueous phase by extraction of GVL using CO2. We will then present results from reaction kinetics studies to quantify the effects of polar aprotic organic solvents on reaction rates and selectivities of acid-catalyzed reactions of relevance for biomass conversion (e.g., xylose dehydration to furfural). We will suggest that the aprotic organic solvent affects the stabilization of the acidic proton relative to protonated transition states, leading to accelerated reaction rates for these acid-catalyzed biomass conversion reactions.